Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Chloromethyl-1-methyl-1,3-benzimidazole

Jie Han,^a Jun Zhang,^a Qi Yang,^a Ming-gao Zhao^a* and Guang Fan^b

^aDepartment of Pharmacology, School of Pharmacy, Fourth Military Medical University, Chang-le West Road 17, Xi'an 710032, Shaanxi, People's Republic of China, and ^bCollege of Chemistry & Chemical Engineering, Xianyang Normal University, Xianyang 712000, Shaanxi, People's Republic of China Correspondence e-mail: minggao@fmmu.edu.cn

Received 7 July 2011; accepted 15 July 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.042; wR factor = 0.122; data-to-parameter ratio = 14.0.

The title compound, C9H9ClN2, was prepared from the reaction of N-methylbenzene-1,2-diamine and 2-chloroacetic acid in boiling 6 M hydrochloric acid. The benzimidazole unit is approximately planar, the largest deviation from the mean plane being 0.008 (1) Å. The Cl atom is displaced by 1.667 (2) Å from this plane. The methyl group is statistically disordered with equal occupancy.

Related literature

For the biological activity of benzimidazoles, see: Refaat (2010); Laryea et al. (2010); Horton et al. (2003); Ries et al. (2003); Spasov et al. (1999); Matsui et al. (1994); Porcari et al. (1998); Rath et al. (1997); Migawa et al. (1998). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental

Crystal data	
C ₉ H ₉ ClN ₂	a = 6.607 (2) Å
$M_r = 180.63$	b = 8.168 (2) Å
Triclinic, P1	c = 8.925 (3) Å

$\alpha = 84.566 \ (3)^{\circ}$	
$\beta = 79.682 \ (4)^{\circ}$	
$\gamma = 68.134 \ (4)^{\circ}$	
$V = 439.6 (2) \text{ Å}^3$	
7 - 2	

Data collection

Bruker SMART APEX CCD	2191 measured reflections
diffractometer	1523 independent reflections
Absorption correction: multi-scan	1361 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2002)	$R_{\rm int} = 0.018$
$T_{\min} = 0.874, \ T_{\max} = 0.937$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	109 parameters
$wR(F^2) = 0.122$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$
1523 reflections	$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$

Mo $K\alpha$ radiation $\mu = 0.38 \text{ mm}^{-1}$

 $0.37 \times 0.29 \times 0.18 \text{ mm}$

T = 296 K

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

This work was supported by 2009ZX09103-111 and the China Postdoctoral Science Foundation (No. 2009041446). We thank the Instrumental Analysis Center of Northwest University for the data collection at the CCD facility.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2705).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

- Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Horton, D. A., Bourne, G. T. & Sinythe, M. L. (2003). Chem. Rev. 103, 893-930.

Laryea, D., Gullbo, J., Isakssoon, A., Larsson, R. & Nygren, P. (2010). Anti-Cancer Drugs, 21, 33-42.

Matsui, T., Nakamura, Y., Ishikawa, H., Matsuura, A. & Kobayashi, F. (1994). Jpn J. Pharmacol. 64, 115-124.

Migawa, M. T., Girardet, J. L., Walker, J. A., Koszalka, G. W., Chamberlain, S. D., Drach, J. C. & Townsend, L. B. (1998). J. Med. Chem. 41, 1242-1251.

Porcari, A. R., Devivar, R. V., Kucera, L. S., Drach, J. C. & Townsend, L. B. (1998). J. Med. Chem. 41, 1252-1262.

Rath, T., Morningstar, M. L., Boyer, P. L., Hughes, S. M., Buckheitjr, R. W. & Michejda, C. J. (1997). J. Med. Chem. 40, 4199-4207.

Refaat, H. M. (2010). Eur. J. Med. Chem. 45, 2949-2956.

Ries, U. J., Priepke, H. W. M., Hauel, N. H., Haaksma, E. E. J., Stassen, J. M., Wienen, W. & Nar, H. (2003). Bioorg. Med. Chem. Lett. 13, 2297-2321.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spasov, A. A., Yozhitsa, I. N., Bugaeva, L. I. & Anisimova, V. A. (1999). Pharm. Chem. J. 33, 232-243.

supplementary materials

Acta Cryst. (2011). E67, o2104 [doi:10.1107/S1600536811028376]

2-Chloromethyl-1-methyl-1,3-benzimidazole

J. Han, J. Zhang, Q. Yang, M. Zhao and G. Fan

Comment

Benzimidazole and its derivatives are present in various bioactive compounds possessing antiparasitic, antimicrobial, and antifungal properties (Refaat, 2010; Laryea *et al.*, 2010; Horton *et al.*, 2003; Ries *et al.*, 2003; Spasov *et al.*, 1999; Matsui *et al.* 1994). They also play very important role in the synthesis of many natural products and synthetic drugs. Compounds possessing the benzimidazole moiety express significant activity against several viruses such as HIV (Porcari, *et al.*, 1998; Rath, *et al.*, 1997), Herpes (HSV-1) (Migawa, *et al.*, 1998), human cytomegalovirus (HCMV) and influenza. As a part of our ongoing investigations of benzimidazole derivatives, the title compound was synthesized and its crystal structure is reported herein.

The two fused rings forming the benzimidazole moiety are planar with the largest deviation from the mean plane being 0.008 (1)Å. The Cl atom is out of this plane by -1.667 (2)Å (Fig. 1). The methyl group is statistically disordered. The distances and angles within the methyl-benzimidazole agree with the values reported in the literature (43 hits found in the Cambridge Structural Database, Conquest, version 1.13; Allen, 2002).

The packing is only stabilized by electrostatic and van der Waals interactions.

Experimental

For the preparation of the title compound *N*-methylbenzene-1,2-diamine (5.0 mmol) and 2-chloroacetic acid(6.0 mmol) was dissolved in 6 N hydrochloric acid (30.0 ml) and refluxed for 6 h. The reaction mixture was cooled in to room temperature, then neutralized with aqueous sodium hydroxide. The precipitate was filtered off and washed with cold water. The crude product was crystallized from ethanol to give white block-like crystals of the title compound.

Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene) and 0.93 Å (aromatic) with $U_{iso}(H) = 1.2U_{eq}(C)$, aromatic or methylene) and $U_{iso}(H) = 1.5U_{eq}(C)$, methyl).

Figures

Fig. 1. The asymmetric unit of (1) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

2-Chloromethyl-1-methyl-1,3-benzimidazole

Crystal data	
C9H9ClN2	Z = 2
$M_r = 180.63$	F(000) = 188
Triclinic, <i>P</i> T	$D_{\rm x} = 1.365 {\rm ~Mg~m^{-3}}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 6.607 (2) Å	Cell parameters from 2191 reflections
b = 8.168 (2) Å	$\theta = 2.3 - 25.1^{\circ}$
c = 8.925 (3) Å	$\mu = 0.38 \text{ mm}^{-1}$
$\alpha = 84.566 \ (3)^{\circ}$	T = 296 K
$\beta = 79.682 \ (4)^{\circ}$	Block, white
$\gamma = 68.134 \ (4)^{\circ}$	$0.37 \times 0.29 \times 0.18 \text{ mm}$
$V = 439.6 (2) \text{ Å}^3$	

Data collection

1523 independent reflections
1361 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.018$
$\theta_{\text{max}} = 25.1^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$
$h = -7 \rightarrow 5$
$k = -9 \rightarrow 9$
$l = -10 \rightarrow 10$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.122$	H-atom parameters constrained
<i>S</i> = 1.06	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0552P)^{2} + 0.1656P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
1523 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
109 parameters	$\Delta \rho_{max} = 0.20 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.32 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds

in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}^*/U_{\rm eq}$	Occ. (<1)
C1	0.2259 (4)	0.4372 (3)	0.6995 (2)	0.0610 (6)	
H1A	0.3424	0.4781	0.7109	0.073*	
H1B	0.0985	0.5393	0.6790	0.073*	
C2	0.1665 (3)	0.3458 (2)	0.8432 (2)	0.0498 (5)	
C3	-0.2214 (4)	0.3954 (3)	0.8004 (3)	0.0666 (6)	
H3A	-0.3405	0.3638	0.8563	0.100*	0.50
H3B	-0.1788	0.3444	0.7017	0.100*	0.50
H3C	-0.2683	0.5215	0.7888	0.100*	0.50
H3D	-0.1846	0.4560	0.7082	0.100*	0.50
H3E	-0.3463	0.4754	0.8628	0.100*	0.50
H3F	-0.2568	0.2983	0.7757	0.100*	0.50
C4	-0.0294 (3)	0.2393 (2)	1.0212 (2)	0.0488 (5)	
C5	-0.1859 (4)	0.1843 (3)	1.1144 (3)	0.0600 (6)	
Н5	-0.3242	0.2069	1.0885	0.072*	
C6	-0.1250 (4)	0.0947 (3)	1.2471 (3)	0.0675 (6)	
H6	-0.2258	0.0574	1.3137	0.081*	
C7	0.0842 (4)	0.0581 (3)	1.2848 (3)	0.0673 (6)	
H7	0.1198	-0.0041	1.3751	0.081*	
C8	0.2384 (4)	0.1119 (3)	1.1915 (2)	0.0605 (6)	
H8	0.3773	0.0871	1.2173	0.073*	
С9	0.1803 (3)	0.2046 (2)	1.0572 (2)	0.0495 (5)	
Cl1	0.31643 (17)	0.29247 (10)	0.54306 (8)	0.1088 (4)	
N1	0.3008 (3)	0.2749 (2)	0.94299 (19)	0.0535 (4)	
N2	-0.0342 (3)	0.3294 (2)	0.88264 (18)	0.0498 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0686 (13)	0.0587 (12)	0.0545 (12)	-0.0238 (11)	-0.0075 (10)	0.0029 (10)
C2	0.0509 (11)	0.0472 (10)	0.0489 (11)	-0.0161 (8)	-0.0037 (8)	-0.0048 (8)
C3	0.0599 (13)	0.0680 (14)	0.0736 (15)	-0.0195 (11)	-0.0252 (11)	0.0030 (11)
C4	0.0505 (10)	0.0436 (10)	0.0495 (11)	-0.0146 (8)	-0.0031 (8)	-0.0077 (8)
C5	0.0550 (12)	0.0568 (12)	0.0676 (14)	-0.0235 (10)	0.0018 (10)	-0.0068 (10)
C6	0.0741 (15)	0.0634 (13)	0.0630 (14)	-0.0314 (12)	0.0101 (11)	-0.0041 (11)
C7	0.0840 (16)	0.0602 (13)	0.0512 (12)	-0.0235 (12)	-0.0033 (11)	0.0048 (10)
C8	0.0609 (13)	0.0639 (13)	0.0540 (12)	-0.0198 (10)	-0.0100 (10)	0.0006 (10)
C9	0.0513 (11)	0.0483 (10)	0.0474 (10)	-0.0173 (9)	-0.0040 (8)	-0.0042 (8)

supplementary materials

Cl1	0.1675 (9)	0.0837 (5)	0.0523 (4)	-0.0326 (5)	0.0147 (4)	-0.0069 (3)	
N1	0.0494 (9)	0.0588 (10)	0.0518 (10)	-0.0203 (8)	-0.0065 (7)	0.0006 (8)	
N2	0.0465 (9)	0.0509 (9)	0.0520 (9)	-0.0170 (7)	-0.0082 (7)	-0.0028 (7)	
Geometric param	neters (Å, °)						
C1—C2		1.488 (3)	C4—N	12	1.3	377 (3)	
C1—Cl1		1.786 (2)	C4—C	25	1.3	389 (3)	
C1—H1A		0.9700	C4—C	29	1.3	1.398 (3)	
C1—H1B		0.9700	С5—С	26	1.373 (3)		
C2—N1		1.310 (3)	С5—Н	15	0.9300		
C2—N2		1.363 (3)	C6—C	27	1.397 (4)		
C3—N2		1.453 (3)	C6—H	16	0.9300		
С3—НЗА		0.9600	С7—С	28	1.3	373 (3)	
С3—Н3В		0.9600	С7—Н	[7	0.9	9300	
С3—НЗС		0.9600	C8—C	29	1.3	390 (3)	
C3—H3D		0.9600	C8—H	18	0.9	9300	
C3—H3E		0.9600	C9—N	11	1.3	393 (3)	
C3—H3F		0.9600					
C2—C1—Cl1		110.86 (15)	H3B—	-C3—H3F	56	.3	
C2—C1—H1A		109.5	H3C—	-C3—H3F	141.1		
Cl1—C1—H1A		109.5	H3D—	-C3—H3F	109.5		
C2—C1—H1B		109.5	H3E—	-C3—H3F	109.5		
Cl1—C1—H1B		109.5	N2—C	C4—C5	131.59 (19)		
H1A—C1—H1B		108.1	N2—C	С4—С9	105.69 (17)		
N1—C2—N2		114.14 (18)	С5—С	С4—С9	12	2.71 (19)	
N1-C2-C1		123.36 (19)	С6—С	C5—C4	11	6.3 (2)	
N2—C2—C1		122.49 (18)	С6—С	25—Н5	12	1.9	
N2—C3—H3A		109.5	C4—C	25—Н5	12	1.9	
N2—C3—H3B		109.5	С5—С	С6—С7	12	1.9 (2)	
НЗА—СЗ—НЗВ		109.5	С5—С	26—Н6	119.1		
N2—C3—H3C		109.5	С7—С	26—Н6	119.1		
НЗА—СЗ—НЗС		109.5	C8—C7—C6		121.5 (2)		
НЗВ—СЗ—НЗС		109.5	C8—C	27—Н7	119.3		
N2—C3—H3D		109.5	C6—C	27—Н7	119.3		
НЗА—СЗ—НЗD		141.1	C7—C8—C9		117.9 (2)		
H3B—C3—H3D		56.3	С7—С8—Н8		121.1		
H3C—C3—H3D		56.3	С9—С	28—Н8	121.1		
N2—C3—H3E		109.5	C8—C	29—N1	134	0.36 (19)	
НЗА—СЗ—НЗЕ		56.3	C8—C	C9—C4	11	9.77 (19)	
H3B—C3—H3E		141.1	N1—C	С9—С4	10	9.87 (17)	
НЗС—СЗ—НЗЕ		56.3	C2—N	11—С9	10	4.17 (16)	
H3D—C3—H3E		109.5	C2—N	12—C4	10	6.13 (16)	
N2—C3—H3F		109.5	C2—N	V2—C3	12	8.34 (18)	
H3A—C3—H3F		56.3	C4—N	И2—С3	12	5.52 (17)	

